Data Compression of High-spectral Resolution Measurements

H.-L. Allen Huang, Bormin Huang
CIMSS/SSEC, University of WI-Madison
Tim Schmit, Roger Heyman
NOAA/NESDIS

Satellite Direct Readout Conference for the Americas 9-13 December 2002 Miami, Florida

Presentation Outlines

- High-spectral IR Data
 - What to Expect?
- High-spectral Data Information
 - Spectral, Spatial & Temporal Information?
- High-spectral Data Processing
 - Why can we Compress Data Effectively?
 - Why can we accept lossy compression?
- Roadmap for High-spectral Data Processing
 - Measurement Simulation, Data Compression
 Study, and tunable lossless/lossy approach

High-spectral resolution IR Data -

What to Expect -> Lots more data than we can handle

High-spectral resolution Data Processing -

Why we need Data Compression ->

Too much data for processing, distribution and Archival

Data Rate/Volume

	#CH	IFOV(km)	Data Rate (Mb/Sec)	Volume (MB/day)
GOES	18	10	0.04	~97
HES	~2000	4-10	~20	~10000

High-spectral resolution Data Processing - Spectral Data Compression Approaches ->

High-spectral resolution Data Information -Spectral Information -> Vertical Resolution

~3 Pieces

High-spectral resolution Data Information - Spectral Information -> Vertical Resolution

High-spectral resolution Data Information - Spectral Information -> Sounding Accuracy

High-spectral resolution Data Information Spectral Information -> Marco & Micro Cloud Property

High-spectral resolution Data Information - Spatial Information -> Gradient

High-spectral resolution Data Information - Temporal Information -> Moisture Transport

High-spectral resolution Data Processing - Data Compression Approaches ->

To Achieve best Compression within given resource

•UW Wavelet -On Board/On Ground (tunable Lossless/lossy)

•UW DPC - On Ground Only (lossy only)

High-spectral resolution Data Processing - Wavelet Data Compression ->

Require \ll O(N⁴) of operation for N by N data compression

A wavelet compression scheme rearranges the transformed coefficients in a special tree structure. The data is then entropy-coded.

Applying the (2,2) biorthogonal wavelet compression to two 16-bit ABS test data cubes we have the following lossless compression results:

- 1. Noisy data (Simulated; IR longwave; single granule only): Compression ratio=2.05, Compressed bit rate=7.80 bits / pixel;
- 2.Noise-free data ('radNoiseFreeInt16LW_Granule176.bin'): Compression ratio=3.34, Compressed bit rate=4.79 bits / pixel.

High-spectral resolution Data Processing Dependent PC Lossy Data Compression -> Require ~O(N⁴) of operation for N by N data compression

High-spectral resolution Data Processing - Dependent PC Lossy Data Compression ->

High-spectral resolution Data Processing Dependent PC Lossy Data Compression ->
Compression loss is mainly "Noise" only

High-spectral resolution Data Processing - Why can we Filter-out Noise Effectively

1911.05

2207.9

2523.95

e) 550

S66.049

1182.1

1278.95

1595

wavenumber [cm 1]

High-spectral resolution Data Processing - Why can we Estimate Noise Effectively ->

Noise are Well Estimated

CURRENT HIGH-SPECTRAL RESOLUTION DATA COMPRESSION STUDY STATUS

CIMSS/UW - Wavelet Lossless (~2)

DPC Lossy (~10-20; tunable) (On-ground only)

NESDIS - IPC Lossy (~10-20; tunable) (On-ground only)

Aerospace - Wavelet Lossless (~2)

Wavelet Lossy (~4-?; tunable)

GSFC - Rice Lossless (~2)

? - under study

Rice Lossy (~4-?; tunable)

CURRENT HIGH-SPECTRAL RESOLUTION DATA COMPRESSION STUDY SUMMARY

•Wavelet/Rice Compression can achieve both lossless and lossy compression effects:

Tunable and can be implemented both in spacecraft and on- ground

•Principal Component Compression can achieve both sizable lossy compression ratio and suppress/filter-out data noise (for ground based application only)

